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Abstract—Present study has the aimed to assess the 

percentage of removal of chemical oxygen demand (COD) of 

non-biodegradable leachate from the landfill in the city of Loja 

(Ecuador) to be subjected to a Fenton process. Different 

concentrations of H2O2 and FeSO4 were combined in acidic pH 

values, obtaining removals close to 80% with a concentration of 

500 ppm of H2O2 and 1000 ppm of FeSO4 at pH 4, thus 

establishing an optimum working radius H2O2/FeSO4 equal to 

0.5. Through Box-Behnken statistical analyses were 

determinates the significant factors, which correspond to the 

concentration of H2O2 and FeSO4 employed. With this 

information the process was optimized, reaching a theoretical 

removal of 81% at concentrations of 312 ppm of H2O2 and 1087 

ppm of FeSO4 at pH 4. It was observed in this process removal 

of 79% of turbidity, 33% of Nitrates and 89% of Phosphates. 

 
Index Terms—Fenton, landfill leachate, COD removal. 

 

I. INTRODUCTION 

Population growth attached to urban and industrial 

development, carry associated an increase in waste 

generation, and consequently, the removal of it, which 

usually are deposited in landfills [1]. 

Leachates are liquids commonly generated and associated 

with landfill [2]. The own humidity of the waste and the 

rainwater that percolates through them react with the 

products of decomposition of organic matter that is deposited 

in these locations, generating a highly polluting product 

[3]-[5]. 

A leachate is generally characterized by a strong odor and 

a dark color as well as retaining a large number of 

contaminants [6] which are divided into 4 groups : dissolved 

organic matter represented by parameters such as Chemical 

Oxygen Demand (COD), macro inorganic components, 

heavy metals and xenobiotic organic compounds from 

industrial and household chemicals  present in low 

concentrations (typically less than 1 mg/l of individual 

compounds) [7]. 

The leachate composition is variable and depends on many 

factors such as age, environmental conditions, type of waste 

and operating systems within the landfill [2], [8], [9].  

Young or middle-aged leachate (less than 10 years old), 

are acidogenic type, they have a high organic load of low 

molecular weight and biodegradability (Biological Oxygen 
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Demand - BOD5/COD) between 0.6 and 1 [10]. While old 

leachate (over 10 years old) is methanogenic type, have a 

high concentration of organic matter where the refractory 

type is predominantly and therefore are not biodegradable 

with an index BOD5/COD <0.3 because this inhibits biomass 

action [3], [11], [12]. 

Among the different types of physicochemical systems, 

advanced oxidation processes (AOPs) have been reported as 

one of the most efficient methods to degrade a wide variety of 

organic compounds of refractory type that are presented in 

the leachate due to the generation of hydroxyl radicals (·OH) 

[8], [13]. 

Within these processes Fenton 's reagent (Fe
++

, H2O2) has 

been widely used because it is efficient, easy to deal, it reacts 

well with organic compounds and does not produce toxic 

compounds during oxidation [1]. 

The Fenton process in water produces    radicals in the 

absence of organic compounds. According to the following 

reactions [13]: 

 
2 3

2 2Fe H O Fe OH OH               (1) 

 
3 2

2 2 2Fe H O Fe HO H           (2) 

 

Oxidation of ferrous ions to ferric ions begins and 

catalyzes the decomposition of hydrogen peroxide molecules 

giving as a result the rapid generation of hydroxyl radicals 

(Eq. (1)), This reactions depends on the pH [14]. So that in 

the absence of any other oxidizable substance, the net 

reaction of H2O2, gives as result the formation of H2O and O2 

catalyzed by iron [10].  

 
TABLE I: CHARACTERIZATION OF LEACHATE 

Parameters Units Value* 

Lower 95 % 

confidence 

interval 

Upper 95 % 

confidence 

interval 

Dissolved 

Oxygen 
mg/l. 3.50 2.94 4.05 

pH pH units 8.42 8.30 8.55 

Turbidity NTU 39.38 30.91 47.84 

Total 

Suspended 

Solids 

mg/l. 224.75 159.81 289.69 

Sulfates mg/l. 72.09 61.76 82.41 

Total Nitrogen mg/l. 1274.05 1126.49 1421.61 

COD mg/l. 2296.00 1917.47 2674.53 

BOD5 mg/l. 708.32 538.47 878.18 

Alkalinity mg/l. 6034.38 4768.63 7300.12 

Fecal coliform 
UFC/100 

ml. 
45062.50 33220.70 56904.30 

*Average for 16 samples taken from Loja ś landfill 
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application of system for the treatment of landfill leachate, 

which have reported promising results reaching removals 

between 60%-75% COD [10], [12], [15]-[18]. 

Taking into account the importance of natural resources 

and the level in that the leachate affects the environment was 

proposed to do the present research work with the main goal 

to optimize the Fenton process for the treatment of these 

fluids. 

 

II. MATERIAL AND METHODS 

A. Sampling and Characterization 

The leachate collected for the present study was taken from 

Loja's Landfill, located in southern of Ecuador. Was made a 

total of 16 sampling on the basis of standard INEN 2169:98, 

the samples were transported to the laboratory and kept on 

refrigeration at 4 °C for the subsequent analysis. Results 

obtained from the characterization are shown in Table I. All 

of these analyses were developed under standardized 

methodology APHA [19]. 

B. Experimental Procedure 

To evaluate and optimize the Fenton process was chosen a 

random experimental design to laboratory scale. Were 

considered some variables like pH, concentration of 

hydrogen peroxide (H2O2) and concentration of ferrous 

sulfate (FeSO4). Table II(a) shows the encrypted 

experimental combinations where: -1 corresponds to the 

lowest concentration of reagent, 0 to the average 

concentration and +1 to the highest concentration evaluated. 

Table II(b) shows the concentrations used for each of the 

experiments. 

All experiments were carried out into a glass reactor with 

2l. of capacity using jar-test equipment (Phipps & Bird) with 

flat stirring vanes. It was used as batch reactor. A liter of 

leachate was placed into the glass reactor and then the pH was 

conditioned according to the provisions of the experimental 

design using 95-97% H2SO4 (Sigma - Aldrich). The Fenton 

reaction was carried out by the addition of 30% H2O2 (Fisher 

Scientific) and then FeSO4  7H2O (Baker Analyzed); after 

this, the glass reactor was carried to the jar-test equipment 

where the sample was subjected to a rapid mixing of 250 rpm 

for 80 seconds and slowly mixed for 20 minutes at 30rpm. 

Once the stirring is finished, the sample was transferred to 

a graduated cylinder (test-tube) with 1000 ml. of capacity for 

precipitating the sludge formed; during a period of 2 hours. 

The final sampling was made taking an aliquot of supernatant 

liquid. 

To perform COD analysis was used a thermal reactor 

HACH DRB 200 and a HACH DR 2800 spectrophotometer.  

The expression used to determine the COD removal (%) 

achieved was the follows: 
 

100
initial final

initial

COD - COD

COD
                      (3) 

 

Parameters such as: Nitrates and Phosphates were 

determined in the spectrophotometer. The pH was measured 

with a pH-meter HANNA 8520 while the turbidity was 

measured using a HACH 2100N turbidimeter. 

All analyzes were carried out according to standard 

methods [19]. 

C. Statistical Analysis 

The experimental design proposed corresponds to a 

statistical model of response surface type Box Behnken [20], 

[21]. 

This model produces a quadratic response surface equal to: 
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        (4) 

 

To determinate the significance of the factors at a 

confidence level of 95%, three replicates to the central value 

were carried (Table II). Values of the coefficients are 

contrasted with the value of the expanded uncertainty Uexp. 

If:           , the factor corresponding to the coefficient 

does not affect significantly the process. 
 

TABLE II: EXPERIMENTAL DESIGN 

II(A): CODED VALUES  

Nº H2O2 FeSO4 pH 

1 -1 -1 0 

2 1 -1 0 

3 -1 1 0 

4 1 1 0 

5 -1 0 -1 

6 1 0 -1 

7 -1 0 1 

8 1 0 1 

9 0 -1 -1 

10 0 1 -1 

11 0 -1 1 

12 0 1 1 

13* 0 0 0 

 

II(B): VALUES OF CONCENTRATION 

Nº H2O2 (ppm)  FeSO4 (ppm) pH 

1 500 500 4 

2 2000 500 4 

3 500 1000 4 

4 2000 1000 4 

5 500 750 3 

6 2000 750 3 

7 500 750 5 

8 2000 750 5 

9 1000 500 3 

10 1000 1000 3 

11 1000 500 5 

12 1000 1000 5 

13* 1000 750 4 

*Number 13 experiment represents the central point 

 

D. Optimum Point Determination 

The first and second derivatives of the polynomial 

regarding to the significant variables are calculated. With 

these values the determinant of the Hessian matrix is 

constructed to determine whether the stationary point is a 

maximum, minimum or indefinite. 

 

III. RESULTS AND DISCUSSION 

In the next section are detailed the results obtained in the 

experimental process in order to evaluate the efficiency of 
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Fenton process for treatment of landfill leachate. 
 

TABLE III: RESULTS OF COD REMOVAL 

Nº 
H2O2 

(ppm) 

FeSO4 

(ppm) 
pH 

COD Removal 

(%) 

1 500 500 4 24,3 

2 2000 500 4 12,5 

3 500 1000 4 79,5 

4 2000 1000 4 59,1 

5 500 750 3 58,3 

6 2000 750 3 30,2 

7 500 750 5 75,2 

8 2000 750 5 37,8 

9 1000 500 3 60,5 

10 1000 1000 3 61,8 

11 1000 500 5 37,0 

12 1000 1000 5 80,1 

13 1000 750 4 66,9 

 

After evaluate each of the experimental runs, were 

obtained in specific cases removal of COD close to 80% (+/- 

0.40) varying concentrations of H2O2, FeSO4 at different pH 

values (Table III). 

Was obtained a removal of 80% using 1000 ppm of H2O2 

and 1000 ppm of FeSO4 into the sample at pH 5 (Table III, 

Fig. 1); likewise was reached 79.5% of removal when the 

dosage of H2O2 was reduced to 500 ppm reacting with 1000 

ppm of FeSO4 working the sample to pH 4 (Table III, Fig. 1). 

Some studies as [22] reports that the oxidation  by Fenton 

reaction can remove approximately 20 to 80% of COD 

present in the leachate. [17] reports a 68% COD removal only 

with Fenton oxidation and reaches values of 86% when it is 

combined with a coagulation process, are reported similar 

cases in which was obtained a total removal between 63% 

and 71% combining Fenton process with other systems [2], 

[11].  

[23] obtains a removal of 61% at 45 minutes of the 

reaction, obtaining the maximum efficiency of 62.9% after 

60 min; therefore, there is a tendency to increase the removal 

rate over time.  

In our case, the reaction time was two hours and superior 

results were obtained. The optimum pH was set at 4 because, 

in this, the removals were high with a lower dosage of 

reagents (Table III, Fig. 1). 

 

 
Fig. 1. Percentage of COD removal efficiency versus ratio [H2O2]/[Fe2+] achieved at pH=3, pH=4, and pH = 5. 

 

Ref. [4], [24] in his studies established that the optimum 

pH for the Fenton reaction is in the range of 2-4 and that the 

system can work at values near 5, but not on this because the 

efficiency of treatment would decrease significantly. 

As for the concentration of reactants [10], [25] establish an 

optimal ratio of H2O2/Fe (II) between 1.5-3. In this particular 

case, the ratio with greater efficiency was obtained with 

values of 1 and 0.5, achieving removals of 80% and 79.45% 

respectively (Fig. 1).  

In addition to this it was determined that with Fenton 

process is obtained significant removals in other parameters 

such as those showed in Table IV. 

 
TABLE IV: RESULTS OF OTHERS PARAMETERS REMOVAL 

Parameter Removal (%) 

Nitrates 39 (±0.59) 

Phosphates 89 (±0.50) 

Turbidity 79 (±0.81) 

 

A. Process Optimization 

Statistical analysis established that significant process 

values correspond to the doses of H2O2 and FeSO4 used in the 

oxidation.  

With this information the stationary point of the process 

which result to be a theoretical maximum where COD 

removal was set at 81.4 %, using a dose of H2O2 of 312ppm, 

1086ppm of FeSO4 working of the sample to pH 4 (Fig. 2). 

 

 
Fig. 2. Response surface models for COD removal efficiency at pH 4. 

 

The theoretical value of % removal is slightly higher than 
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that found in the experimentation carried out. The 

concentrations of reactants and pH are very close to those 

used in experiment 3. 

 

IV. CONCLUSIONS 

Fenton was effectively used to reduce concentrations of 

COD of landfill leachate. The maximum amount of COD that 

could be removed by the Fenton’s treatment was 79.5 % of 

the initial value with a concentration of 500 ppm of H2O2 and 

1000 ppm of FeSO4 at pH 4, thus establishing an optimum 

working radius H2O2/FeSO4 equal to 0.5. 

Through Box-Behnken statistical analyses were 

determinates the significant factors, which correspond to the 

concentration of H2O2 and FeSO4. The process was 

optimized, reaching a theoretical removal of 81% at 

concentrations of 312 ppm of H2O2 and 1087 ppm of FeSO4 

at pH 4. 

A trend, experimental and theoretical it is noted that 

decreasing the ratio [H2O2]/[Fe
2 +

] increases the efficiency of 

removal of COD at pH 4. Whereas at pH 5 and pH 3 with 

decreasing the ratio decreases the efficiency. Therefore a 

dependence of peroxide greater than the iron is noticed; so an 

excess in hydrogen peroxide affects negatively to the process. 

Usually the Fenton process achieves greater efficiency at 

pH acids. In this matrix shows that as the pH decreases, the 

efficiency decreases. 
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