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Abstract—Flooding is one of the most frequent natural 

disasters in Malaysia, causing billions of ringgits in damages and 
numerous deaths.  One of the key strategies to lessen the impact 
of the disaster is by flood modelling, which is especially 
beneficial in flood risk management and decision making. This 
paper focuses on flood modelling and simulation for a river 
basin using HEC-HMS software with alternative data input 
from rainfall data produced by weather radar (QPE).  Radar 
QPE has the advantage of providing an areal representation of 
rainfall, but it is only an indirect measurement of the values.  
HEC-HMS is an innovative hydrologic modeling software with 
the advantage of a moderate processing time compared to the 
more sophisticated hydrodynamic models yet being reasonably 
accurate. The study methods include the collection and 
preparation of data required, such as DEM, land use, and soil 
type for study area of Klang River basin, Malaysia. Initially, the 
hydrologic model performed a calibration process using the rain 
gauge data in an effort to generate the best-quality hydrologic 
simulations. Subsequently, the rainfall inputs from the mean 
gridded pixel radar QPE values were then used to rerun the 
models. After model calibration, the result shows that the 
coefficient of determination, R2, for the rain gauge input is 
higher (0.8) compared to the radar QPE input (0.6).  It is 
concluded that to produce more accurate results, it was 
recommended that radar QPE calibration was necessary to 
enhance the data. 
 
Keywords—hydrological modeling, HEC-HMS, model, flood 

hydrograph, radar QPE  

I. INTRODUCTION 
Flooding is an inherent natural occurrence resulting from a 

multitude of contributing factors. The extent of the impacted 
area, the duration of the flood, and the depth of the flood all 
vary with flooding. Flooding is the result of water 
overflowing normally dry areas. Floods can be caused by a 
number of circumstances, including unusually high and 
persistent rainfall, growing urbanization, sedimentation from 
rivers, deforestation, and inadequate drainage systems [1, 2]. 
Thus, it is crucial to analyze flood events in order to 
comprehend how the watershed reacts to high rainfall and 
changes in land use. An accurate peak runoff estimate, 
obtained from rainfall-runoff simulation, is essential to 
determining the level of flood risk [3]. Accurate rainfall-
runoff modeling is also necessary for the planning and 
execution of flood control measures in vulnerable areas to 
reduce the hazards to buildings and the lives of individuals 
during extreme rainfall events. 

A Geographic Information System (GIS) is a computerized 
system with the capability of collecting, storing, analyzing, 
and displaying location-based data.  This system may be used 
to model river behavior, forecast floods in real time, and 
research how river behavior influences floods. It can also be 

used to predict how a catchment would react to changes in 
input circumstances [4]. Hydrologic Engineering Corps-
Hydrologic Modeling System (HEC-HMS) is a software that 
simulates precipitation and discharge processes in river basin 
systems. A number of data sources are utilized, including soil 
type, Digital Elevation Models (DEMs), and Land Use Land 
Cover (LULC) for rainfall-runoff modeling [5, 6]. These data 
can now be easily processed and assessed to determine the 
parameters of hydrological modeling with the aid of GIS 
development [7, 8]. The Hydrologic Engineering Center 
(HEC) created HEC Geo-HMS and an extension tool known 
as the hydro arc tool in order to construct the HEC-HMS 
database. In addition, by using DEM, topography analysis is 
performed utilizing the ArcGIS tool to delineate the 
watershed and river-stream network. The creation of the 
fundamental rainfall-runoff model by HEC-HMS requires an 
understanding of the basin's features, such as reservoir area, 
slope, river length, etc. 

Rain gauges and radars are commonly used to measure and 
estimate rainfall. Within a specific watershed, the importance 
of rainfall input in hydrologic models acts as a crucial 
component for water balance calculations, water distribution 
forecasts, and flood alerts [9, 10]. The data from rain gauges 
are commonly assumed to provide accurate estimations at 
ground interfaces; nevertheless, estimating rainfall spatial 
variability at any watershed level is difficult [11]. Meanwhile, 
radar offers real-time, spatial, and temporal data over a large 
area. The rainfall data produced by weather radar or known 
as radar Quantitative Precipitation Estimation (QPE) is 
crucial for hydrological model simulations used in 
operational flood prediction [12, 13].  

Most of the studies by previous researchers made use of 
extensive rain gauge networks as the time series data input 
for HEC-HMS model [14]. Rarely are there studies especially 
in Malaysia, compare the simulated flow output from inputs 
using both rain gauge and radar data, though several studies 
on radar QPE had been initiated among others as described in 
[15, 16].  Additionally, the integration of gridded based radar 
QPE input with the HEC-HMS model has not been widely 
studied. This research was planned with these deficiencies in 
mind, with an emphasis on assessing these variables in 
hydrologic analysis for Malaysia circumstances. This study 
aimed to develop an integrated hydro-meteorological flood 
modeling using HEC-HMS for Klang River basin through the 
Integration of Digital Elevation Models (DEM), Geographic 
Information Systems (GIS), and remote sensing with 
alternative inputs from rain gauge and radar QPE.  

This paper will proceed as described below. The literature 
review is covered in Section II, and the study area and data 
processing are explained in Section III. The several 
approaches and combinations used in the HEC-HMS model 
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to replicate rainfall-runoff processes in the Klang River basin 
are also covered in this section. This section includes a 
detailed discussion of the parameters and values given in the 
HEC-HMS model generated during this investigation. Next, 
the result and discussion are presented in Section IV. Finally, 
this study concludes with recommendations in Section V. 

II. LITERATURE REVIEW 
The HEC-HMS is a conceptually driven, deterministic, and 

semi-distributed hydrological modeling system. Numerous 
scholars have utilized the HEC-HMS tool in hydrological 
modeling. This is due to the fact that this application’s 
simulation of direct discharge from precipitation can 
accurately represent the flow behavior. In Turkey, Barbosa et 
al., [17] have applied HEC-HMS to computational hydraulic 
analysis and hydrological process modeling using interface 
approaches that integrate HEC-HMS and HEC-RAS 
modeling via GIS, covering the Zab Besar River’s floodplains. 
The results are likewise very good, with a very decent 
correlation coefficient, after calibration and validation. 
Martin et al., [18] used hydraulic flow modeling to determine 
surface runoff using the Arc-Map along with HEC-GeoHMS 
components. Next, Sapountzis et al., [19] carried out a study 
to evaluate the application of satellites precipitation data for 
hydrological studies, including flash flood peak discharge in 
ungauged Mediterranean basins. On Thasos Island, Greece, 
linear equations were made based on the relationship between 
the total height of precipitation from a local rain gauge and 
the Global Precipitation Measurement and the Integrated 
Multi-Satellite Retrievals (GPMIMERG) in order to change 
the uncalibrated GPM-IMERG rainfall data. The 
hydrological modeling results showed that the uncalibrated 
GPM-IMERG rainfall data could not predict flash floods. 
However, rain gauge data input could more accurately 
simulate peak flow. Additionally, by using extrapolation from 
linear regression models, it was proposed that the correlation 
between satellite spatiotemporal precipitation data and 
ground rainfall data can enhance the effectiveness and 
precision of flash flood analyses for flood mitigation 
strategies in ungauged watersheds (R2 > 0.65). 

Moreover, HEC-HMS has been used to model rainfall and 
runoff in a number of Indonesian watersheds. Affandi et al., 
[20] reported the lowest RMSE value of 3.7, and the Nash 
approach produced the lowest value of –0.2 in the Sampean 
Baru basin on Java Island. The same thing has also been done 
in the Bantimurung Sub-watershed, South Province, where 
GIS and HEC-HMS work together to simulate hydrological 
modeling quite well. This is done using a soil texture map 
from the Ministry of Agriculture of the Republic of Indonesia, 
which yields R2 and NSE values of 0.595 and 0.456, 
respectively [21]. In China, Oleyiblo et al., [22] conducted 
research in the Wan'an and Misai basins using the HEC-HMS 
application to anticipate floods. The application was then 
calibrated and validated using rainfall data obtained from 
field measurements, yielding results with a reasonably good 
correlation value. 

In addition, numerous earlier investigations demonstrated 
the HEC-HMS model’s suitability for flood simulation. 
Harka et al., [23] claimed that the model simulation’s 
outcomes were location-specific in this regard. In their 2019 

study, Ademe et al., [24] employed the HEC-HMS model to 
forecast flooding in the watershed of Ethiopia’s Lake Tana 
basin. According to research, the model can replicate floods. 
In their evaluation of drainage structure failure across Akaki 
river crossing, Guduru et al., [25] concluded that HEC-HMS 
accurately approximated design discharge. An analysis of the 
Seethawaka River, Sri Lanka, through the lens of an event-
based streamflow simulation approach was done by 
Gunatilakhe et al., [26]. The results show that the model 
created in this work can satisfactorily simulate peak 
discharges and time their occurrence based on the results of 
statistical parameters and graphical observations.  

Malaysia is a tropical country with high humidity and 
copious rainfall, amounting to an average of 2000–4000 mm 
annually. The yearly average rainfall may surpass the range 
mentioned above, barring exceptionally extreme rainfall 
events that frequently cause floods in multiple places during 
the monsoon seasons [27]. Considering this, establishing a 
policy to evaluate the flood discharge is imperative. The 
runoff is critically affected by the measurement of all factors; 
thus, the best model must be selected with the fewest possible 
input data requirements, an easy-to-understand structure, and 
realistic accuracy. Studied by Ramly and Tahir [28] simulate 
rainfall-runoff model by utilizing the HEC-HMS program 
together with raingauge and DEM data as basin model input 
in the upper Klang-Ampang River basin, a region close to 
Malaysia’s capital that is prone to flooding. The result shows 
a reasonable level of accuracy, as shown by the 0.86 Nash-
Sutcliffe coefficient. Moreover, Adnan et al., [29] investigate 
the comparison of changes in land use in the River Kelantan, 
Malaysia catchment, variations in rainfall patterns led to 
larger changes in peak flow and runoff volume, as would be 
predicted given the intense amount of monsoonal rainfall. 
The result shows the upstream portion of the watershed 
experienced an intensification of runoff volume due to 
changes in land use, specifically an increase in urbanized and 
agricultural areas. Decision-makers, like land use planners, 
can employ appropriate policies based on this information, 
such as limiting the rate of urban expansion, especially along 
rivers and in floodplain zones. 

Furthermore, Sukairi et al., [30] study the performance of 
HEC-HMS and RRI models using raingauge rainfall 
estimates at Sungai Lebir basin, Kelantan. The calibration of 
HEC-HMS model yielded NSE values of -9.806 and 0.858, 
but the model validation yielded values of 0.817 and 0.821. 
On the other hand, the calibration findings for the RRI model 
were –0.312 and 0.587, whereas the validation results were 
0.786 and 0.731. Throughout the entire time period, the HEC-
HMS model was able to produce stream flow values that were 
more precise than those of the RRI model. After completing 
the optimization procedure, more accurate results were 
obtained, and the resulting NSE value increased to 0.611 and 
0.467. Both model’s overall performance is thought to be 
satisfactory. The results show that the HEC-HMS software’s 
computed flow rate does not deviate greatly from the actual 
rate, and they also show that the software is appropriate for 
application in flow rate estimates. 

On top of that, the most popular Soil Water Assessment 
Tool (ArcSWAT) and HEC-HMS model were compared in 
order to evaluate the effects of climate change on streamflow 
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in the Bernam basin, Malaysia [31]. The model’s 
performance was adequate. On the other hand, HEC-HMS 
outperformed ArcSWAT. Several studies have also noted that 
the HEC-HMS model consistently underestimates peak flows 
with significantly higher values [32–34]. As a result, the 
HEC-HMS model needs to be utilized in the research area 
with extreme caution, particularly when it comes to flood 
analysis. 

III. MATERIALS AND METHODS 

A. Study Area  
Klang River basin is the focus of the research. Situated on 

the western coast of Peninsular Malaysia, the Klang River 
basin encompasses about a third of Selangor State and has an 
area of catchment of 1,288.4 . The Klang River basin 
spans the Federal Territory, including Kuala Lumpur, a 
significant urban region in Malaysia, as well as the highly 
developed and industrialized suburbs of Shah Alam, Petaling 
Jaya, Port Klang and Klang as shown in Fig.1. Recently, this 
region has experienced rapid expansion and growth. Periodic 
floods have long been a major barrier to efficient land 
utilization and high living standards in the region of Klang. 
Around 14 percent of the administrative area of the Klang 
Valley (234,347 ha) is susceptible to flooding [27]. The 
majority of the flooded region is located downstream from 
the central business district of Kuala Lumpur and close to the 
Klang River, Selangor. 

 

  
Fig. 1. Location of Klang River basin. 

 

B. Data Processing 
This section includes the outline of a systematic approach 

for the acquisition and organization of data required for the 
spatial hydrological modeling of the given basin. In this study, 
the models incorporated both rain gauge rainfall estimation 
and radar QPE on hourly basis. The weather radar  data were 
retrieved from the Malaysian Meteorological Department 
(MMD), while rainfall gauge and stream flow data were 
obtained from the Department of Irrigation and Drainage 
(DID) in Malaysia. Radar composite products, referred to as 
Radar Integrated Nowcasting System (RaINS), are produced 
by mathematically combining data from different radars and   
radar stations. The products for Peninsular Malaysia are 
derived by interpolating data from ten radar stations across 
the Peninsula into a single grid using the inverse distance 
weighted (IDW) technique. The maximum re-gridded 
reflectivity data from ten radar stations makes up the final 
product [35]. The radar reflectivity is converted to rain rate 

using the Marshall Palmer equation and used as the rainfall 
input but has not gone calibration process as being done in 
reference [36]. Fig. 2 displays the radar image corresponding 
to each subbasin within the Klang River basin. The mean 
gridded pixel value for each subbasin is computed using the 
Quantum Geographic Information System (QGIS) software. 
In addition, for rain gauge data, the areal rainfall for every 
subbasin over the catchment was computed by averaging the 
values of all the points known as arithmetic mean analysis 
method. Next, Arc Hydro and HEC Geo-HMS, which are 
derivatives of a GIS, were employed in this study in order to 
prepare the necessary data for this modeling. Additionally, 
the study entails generating land use and soil maps as well as 
calculating the curve number grid as shown in the details 
below. Finally, the basin model is imported into HEC-HMS 
for further analysis and simulation. 

 

 
Fig. 2.  Uncalibrated radar QPE for the Klang River basin. 

 

1)  Digital Elevation Model (DEM) 
A topographic map, which is a Digital Elevation Model 

(DEM) of 30 m or less, as shown in Fig. 3, is required to find 
the best accuracy on the elevation for every point. It is used 
to delineate catchments and establish cross-sections of the 
river. The conventional approach for delineating a watershed 
area from a topographic map is time-consuming and prone to 
inaccuracies. Consequently, the basin model is schematized 
by the automated extraction process facilitated by the DEM 
and the execution of several operations. 

 

 
Fig. 3. Digital Elevation Model for the Klang River basin. 
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2) Soil map 
Soil map used to determine the hydrological and further 

define the CN value of a catchment. It comprises of various 
types of soil respective to its area covered and can be obtained 
from Digital Soil Map of the World (DSMW) website. Soil 
map of the Klang River basin is illustrated as in Fig. 4. 

 

  
Fig. 4. Hydrologic Soil Group (HSG) for the Klang River basin. 

 
Table 1. Soil texture classes 

SNUM COUNTRY Texture Hydrological Group 
4284 MALAYSIA clay-loam D 
4324 MALAYSIA clay C 

4464 MALAYSIA 
sandy-clay-
loam D 

4552 MALAYSIA loam D 
 
The soil classification used by the Soil Conservation 

Service (SCS) method is the hydrological classification. It is 
a classification that consists of grouping soils into four 
hydrological groups (A, B, C, D), based on their estimated 
infiltration potential where A represents high infiltration rates 
in soil, B represents moderate infiltration rates in soil, C 
represents slow infiltration rates in soil, and D represents 
extremely slow infiltration rates in soil [37]. The transition 
from soil classification to hydrological classification is made 
by providing information on soil texture according to the 
composition of sandy, clay, and loam, because soil texture 
information is essential to determine the runoff coefficient 
[38]. The values of these components are given in the Tables 
1 and 2. From this map, it can be concluded that the most 
dominant class is class D, which shows that the soils have 
slow infiltration rates and therefore a relatively high runoff. 

3) Land use map 
Land use map is used to determine the curve number (CN) 

of a catchment with respect to the soil type of the area. It can 
be obtained from Land Use and Land Cover (LULC) website. 
There was data for every country in the world, but only the 
ones that were connected to the study area were downloaded. 
Land use data was imported as shape files into ArcGIS until 
all of the study region was covered. Land use of the Klang 
catchment is illustrated as in Fig. 5. Table 2 shows the class 
definition of land use in the Klang watershed referring to 
ESRI classification [39]. Only the relevant class numbers and 
class names are listed in the table. 

Table 2. Land use classification 
Class Number Class Name 

1 water 
2 forest 
4 mangrove swamp 
5 crops 
7 built area 
8 bare ground 

11 rangeland 

 
Fig. 5. Land use for the Klang River basin. 

 
4) CN-lookup table 
The lookup table shall comprise the CN corresponding to 

various land use and soil group combinations. The objective 
of this table is to provide a comprehensive definition of the 
CN associated with each combination of land use and 
hydrological group. In this particular scenario, we will 
employ the SCS curve figures derived from the literature [40]. 
Table 3 presents a comprehensive summary of the CN-
Lookup table, which has been generated based on the land use 
classes and their corresponding hydrological groups. 

 
Table 3. Initial CN values for land use and hydrological soils group 

Land use 
HSG 

A B C D 
Water 100 100 100 100 
Forest 25  55 70 77 
Rangeland 66 77 88 94 
Bare ground 72 82 88 90 
Built area 77 85 90 92 
Mangrove swamp 77 80 83 86 

Crops 65 75 82 85 

 
5) CN grid 
The HEC-GeoHMS tool within the ArcGIS software 

platform is utilized for the purpose of generating the CN grid. 
It incorporates the basin’s DEM, the CN-Lookup table, and 
the union result of soil type and land use. The final CN map 
of Klang watershed shown in Fig. 6. 

The SCS-CN approach was chosen as the loss approach for 
each of the sub-basins in the Klang watershed. It is employed 
to calculate the potential runoff following a rainfall event by 
considering the interplay between soil type, land use, and 
hydrologic soil conditions. The antecedent moisture 
condition (AMC) is a hydrologic soil condition that 
characterizes the soil moisture levels that existed before the 
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simulated rainfall event. AMC I is applied to basins that 
experienced minimal precipitation prior to the modeled event, 
while AMC III is utilized in basins that received substantial 
precipitation prior to the modeled event. AMC II is typically 
utilized in modeling applications and could be regarded as the 
average condition. Eqs. (1) and (2) demonstrate how 
adjustment factors are applied to the CN corresponding to the 
AMC II condition in order to obtain curve numbers 
corresponding to AMC conditions I and III [41]. 

 
                                              (1) 

 
                                             (2) 

 

 
Fig. 6. CN map of Klang River basin. 

 

C. HEC- HMS Model 
The HEC-HMS model is widely recognized and 

extensively utilized throughout various hydrological studies 
owing to its capacity to accurately simulate runoff for both 
short and long events, as well as its user-friendly interface 
[42,43]. There are several model components that are 
provided, including the basin model, meteorological model, 
control specification, and time series data input [44]. The 
input for the meteorological model consisted of rainfall and 
streamflow data. Furthermore, the control requirements 
component regulates the duration of the simulation period. 
The control specifications for the model encompassed the 
time period from December 18, 2021, to December 22, 2021, 
with a time step of one hour. 

The SCS-CN loss method was used to calculate the initial 
runoff from a particular or designed rainfall in this study. The 
accumulated rainfall excess is dependent on soil type, land 
use, cumulative precipitation, and preceding moisture 
conditions, as determined in the Eq. (3) [45]:  

(3)  
 
where Pe=accumulated precipitation excess at time t,  
           P =accumulated rainfall depth at time t,  
           Ia=the initial abstraction (0.2S),  
           S =potential maximum retention. 

Maximum retention (S) is connected to watershed 

characteristics (via the dimensionless CN) as Eq. (4):  

 
The SCS-CN is a parameter utilized to depict the 

cumulative impacts of the primary attributes of the area of 
catchment. In terms of the transform method, the SCS Unit 
Hydrograph model was selected to convert excess 
precipitation into runoff. For this approach, the single input is 
the lag time (Tlag) which means the time from the excess 
rainfall center of mass to the hydrograph peak and is 
determined by concentration time, Tc, as shown in Eq. (5):  

 
 = 0.6                                      (5)  

 
where the variables Tlag and Tc represent time intervals 
measured in minutes. 

The Muskingum approach, proposed by McCarthy [31], has 
been chosen as the routing method. The process enables the 
determination of the downstream outflow hydrograph of the 
channel based on the upstream inflow hydrograph. Two 
parameters are required: the flood wave’s travel duration (K) 
via the routing reach and the dimensionless weight (X), which 
represents the flood wave’s attenuation as it passes through 
the reach. Typically, measured discharge hydrographs are 
used to calibrate the models and determine the routing 
parameters [46]. 

D. Model Calibration  
Both manual and automatic calibration procedures were 

employed to optimize the parameters of HEC-HMS. Most 
modeling studies often employ sensitivity analysis to 
determine the key variables and parameter precision 
necessary for calibration. The sensitivity factors were chosen 
based on their impact on the maximum discharge and overall 
volume. In addition, the calibration of the model was 
performed using the Peak-Weighted Root Mean Square Error 
(PWRMS) objective function, as this method was chosen for 
its simplicity and effectiveness [47]. Possible adjustments to  
watershed parameters, including curve number, Tlag, 
baseflow, and initial abstraction may be necessary to achieve 
an optimal correspondence between simulation results and 
observations. 

Next, the effectiveness of the model and the chosen loss 
and transform method was assessed by comparing observed 
streamflow to model-simulated values using statistical 
evaluation criteria such as coefficient of determination ( ) 
(Eq. 6), percent bias (PBIAS) (Eq. 7), Nash–Sutcliffe 
Efficiency (NSE) (Eq. 8) and Root mean square error-
standard deviation ratio (RSR) (Eq. 9). 

 

                      (6) 

                               (7) 

                               (8) 
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                                                   (9) 

where, (Qo)k, (Qs)k are the kth observed and simulated 
discharges respectively;  = mean observed discharge; n is 
the total number of reference data points. 

IV. RESULT AND DISCUSSION 

A. Watershed Parameters 
Table 4 shows the different watershed factors that were 

used to calibrate the model. For example, there was a spatial 
variation in the CN value. The weighted curve’s overall 
numbers fall between 80.0 and 91.6. Furthermore, Subbasin-
16 has the watershed’s highest basin slope, which is 24.9%. 
On the other hand, Fig. 7 shows results of the sub-basin 
schematic diagram in HEC-HMS modeling. 

B. Model Simulation Result 
The findings of hydrological model employed in this study 

exhibited a satisfactory correlation among the simulated and 
observed hydrographs subsequent to the optimization 
process. Table 5 displays the computed percent error in total 
volume and peak flow between observed and simulated 
values in raingauge and radar QPE simulations prior to 
optimization. These values, which are respectively 37.5% and 
22.8% for the total volume and 29.6% and 23.7% for the peak 
flow, indicate that the error was approximately high. This 
finding led to the sensitivity analysis being carried out to 
identify the most sensitive parameter. It was discovered that 
while flood traveling time (k) was more insensitive, Tlag and 
CN were more sensitive. The range values of each parameter 
have been adjusted from +10% to -10%, and this adjustment 
is considered acceptable [48]. As demonstrated in Table 6, 
following optimization, the RE for raingauge rainfall 
estimation decreased to 2.1% for the peak flow and 0.1% for 
the total volume, while the RE for radar QPE decreased to 
0.2% for the peak flow and 1.0% for the total volume, 
respectively. According to Rizal et al., [21] the outcome is 
quite satisfactory, with acceptable ranges of relative percent 
errors between observed and simulated values of less than 
20%.  

Table 4. Watershed parameters generated by HEC-GeoHMS for Klang 
River basin 

Subbasin Area 
( ) 

Lag Time 
(min) 

Basin 
Slope (%) 

CN 

Subbasin-1 77.8 115.0 13.2 91.2 

Subbasin-10 34.6 94.7 14.6 88.8 

Subbasin-11 97.0 146.6 17.7 87.9 

Subbasin-12 51.3 129.2 6.7 90.2 

Subbasin-13 70.9 156.0 11.8 88.6 

Subbasin-15 35.5 222.7 7.8 90.5 

Subbasin-16 127.9 115.5 29.4 88.3 

Subbasin-2 72.4 203.2 10.5 81.8 

Subbasin-23 60.5 224.0 9.0 90.5 

Subbasin-27 103.4 93.7 13.2 91.6 

Subbasin-5 25.2 83.6 13.2 87.7 

Subbasin-6 82.8 136.4 12.9 90.1 

Subbasin-7 124.2 173.5 26.9 82.6 

Subbasin-8 116.3 148.1 28.9 80.0 

Subbasin-9 67.9 108.9 16.5 87.9 

 

 
Fig. 7. HEC-HMS sub-basins schematic diagram. 

 
 

Table 5. Simulated and observed peak discharges and total volume and their evaluation criteria before calibration

RE: relative error; R2 : correlation coefficient; NSE: Sutcliffe Efficiency; PBIAS: percent bias; RSR: Root mean square error–standard deviation ratio
 

Table 6. Simulated and observed peak discharges and total volume and their evaluation criteria after calibration 

RE: relative error; R2 : correlation coefficient; NSE: Sutcliffe Efficiency; PBIAS: percent bias; RSR: Root mean square error–standard deviation ratio
 

The results shown in Table 6 also show a pretty good match 
between the measured and predicted peak flow rates for 
raingauge rainfall ( = 0.8) during the calibration period 

compared to radar QPE ( = 0.6). The correlation coefficient 
(>0.8) found in this investigation can be regarded as strong 
based on the classification described in Zou et al., [49]. Better 

 
Total volume (mm) Peak discharge (m3/s)  NSE PBIAS (%) RSR 

 
Simulated Observed RE Simulated Observed RE 

    

Rain gauge 130.5 208.9 –37.5 905.2 1286.4 –29.6 0.3 –0.6 –37.5 1.3 

Radar QPE 161.3 208.9 –22.8 981.1 1286.4 –23.7 0.2 –0.3 –22.7 1.2 

 
Total volume (mm) Peak discharge (m3/s)  NSE PBIAS (%) RSR 

 
Simulated Observed RE Simulated Observed RE 

    

Rain gauge 216.3 216.0 0.1 1313.7 1286.4 2.1 0.8 0.7 0.1 0.6 

Radar QPE 218.2 216.0 1.0 1284.2 1286.4 –0.2 0.6 0.5 1.0 0.7 

�=0.8 
NSE=0.7 

PBIAS=0.12% 
RSR=0.6 
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results were found between the simulated and actual values 
for the Nash–Sutcliffe Efficiency (NSE) criteria. The model 
performs satisfactorily, with an NSE value of 0.7 for 
raingauge estimation and 0.5 for radar QPE. According to 
Moriasi et al., [50], if the Nash–Sutcliffe efficiency of the 
model simulation is more than 0.5, it is considered 
satisfactory; if it is more than 0.65, it is considered good; and 
if it is more than 0.75, it is considered very good. An NSE 
value of 1 represents a model that predicts perfectly.  

In addition, the simulation performance of raingauge 
rainfall is somewhat better than radar QPE when measured by 
the ratio of the standard deviation of observations to the root 
mean square error (RSR)value. Based on the value of 0.6 
acquired, the model can be deemed suitable if RSR is less 
than 0.7 [51]. Conversely, a model’s capacity to replicate a 
basin’s hydrological features increases with decreasing RSR 
values. As a result, good simulation between the estimated 
and observed values was demonstrated by rain gauge data, as 
evidenced by the four statistical assessment criteria with 
values of NSE = 0.7, R2 = 0.8, PBIAS = 0.1, and RSR = 0.6.  

 

 
Fig. 8. Simulated and observed hydrograph using raingauge estimate 

rainfall after calibration. 
 

 
Fig. 9. Simulated and observed hydrograph using radar QPE after 

calibration. 
 
Figs. 8 and 9 illustrate the comparison hydrograph between 

the runoff simulations using rain gauge and radar QPE after 
model calibration. The blue line represents the streamflow 
data obtained at the Rantau Panjang station, while the red line 
represents the flow that the model generated. In both rainfall 
estimation, the hydrograph shape was accurately reproduced 
in the model output. Specifically, the shape of the hydrograph 
and its peak time matched well. In Fig. 8, the runoff 
simulation by raingauge shows the computed volume was 
216.3 mm, which is very close to the observed volume (216.0 
mm). It can also be seen that the observed peak discharge on 
December 18, 2021, was about 1286.4 m3/s and the computed 

peak discharge was about 1313.7 m3/s with an accepted 
percent error of 2.1%. Besides, the computed volume 
discharged by radar QPE (218.2 mm) shows slightly higher 
than observed volume (216.0 mm) as shown in Fig. 9. The 
result shows that the peak discharge that was simulated 
(1284.2 mm3/s) on December 18, 2021, was slightly 
underestimated compared to the observed peak discharge 
(1286.4 mm3/s), with a percent error of 0.2%. Both simulated 
hydrographs show that this HEC–HMS model successfully 
captures the peak discharge by taking into account the 
distributed–mode spatial variability of meteorological 
parameters. 

Rain gauges data have the advantage over weather radar 
QPE because they can precisely measure rainfall at a single 
spot. Extreme rainfall events surpass the precision of radar 
QPE. This is due to the large margin of error that results from 
inferring rainfall intensity from radar reflectivity 
measurements [52]. It should be highlighted that precisely 
calculating rainfall using radar remains a challenging issue, 
even with advancements in radar technology and 
development. This is mainly due to the fact that indirectly 
estimating rainfall using radar QPE is limited by locations at 
heights greater than or equal to the radar station [53]. 
Furthermore, it is important to have observed rainfall data to 
establish a comparison with radar QPE as a benchmark before 
entering the data into the modeling process to assess rainfall 
or flooding in a particular area.  Nevertheless, radar QPE has 
proven to be a very effective alternative to gauge rainfall and 
will be of significant use especially for areas with sparsely 
installed gauges. 

V.    CONCLUSION 
This study focuses on the methodology for the setup of a 

rainfall–runoff model using the HEC–HMS software 
incorporating two different sources of rainfall input. The 
simulation results from the SCS loss and transform methods 
were good, and the HEC–HMS model performed 
satisfactorily in estimating the peak flow and total volume for 
both rain gauge data and radar QPE input in the watershed of 
Klang River basin. The statistical analysis demonstrated that 
when comparing simulated and observed streamflow, the rain 
gauge data produced more accurate results than the 
uncalibrated radar QPE. Therefore, radar QPE calibration 
methods can be performed using radar–gauge merging to 
ensure the enhancement of simulation results acquired from 
the radar data. For future work, validation of the model is 
required in order to ensure that the model parameters function 
outside of the flow circumstances used for calibration. In 
addition, since the flow data in this study are insufficient to 
precisely estimate the flows at the particular outlet, it is 
advised to set up additional discharge gauge stations in the 
watershed to improve the model’s performance in simulating 
runoff. 
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