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Abstract—Heavy metals pollution and their toxic levels in 

soils is one of the major problems associated with the 

environment. Like other large cities, Ahwaz, in Southwest of 

Iran, is exposed to all kinds of environmental pollutions which 

pose serious problems for human health. A total of 50 soil 

samples were taken randomly from the surface soils in Ahwaz 

and the elements of cadmium and lead were measured. 

Geostatistic and non geostatistic methods were used to 

determine the spatial distribution. The probability maps 

were produced using Geographic Information System methods. 

On the other hand, the Radial Basis Functions is the best 

interpolation method for Cd and Pb with absoluteerrorof0.209. 

About 90percentof study area had more cadmium pollution 

than standard levels while Pb contamination in about 33 

percent of the study area is more than standard levels. 

 

Index Terms—Ahwaz, environmental pollution, geostatistics, 

heavy metals. 

 

I. INTRODUCTION 

Soil can naturally have high concentration of heavy metals 

due to the weathering of parent material. Industrialization and 

urbanization have transferred heavy metals into the 

environment. They are produced from a variety of natural and 

anthropogenic sources, such as atmospheric deposition, 

geologic weathering, agricultural activities, and residential 

and industrial products [1]. Studies of urban soils heavy 

metals contaminations carried out on a number of cities, have 

found elevated levels of heavy metals from anthropogenic 

sources [2]-[4]. Physical and chemical properties of urban 

soils are affected by anthropogenic activities such as 

smelting, motor vehicles, domestic activities and waste 

disposal.  

Spatial distribution and source identification of heavy 

metals in soils are essential for identification of the hot-spot 

areas of pollution and to assess the potential sources of 

pollutants. Heavy metal pollution in soils is commonly 

estimated by interpolating concentrations of heavy metals 

sampled at point locations so that each heavy metal is 

represented in a separate map [5]. The methods of 

geostatistics use the stochastic theory of spatial correlation 

for both interpolation and apportioning uncertainty [6]. 

Geostatistics provides an advanced methodology that 

facilitates quantification of the spatial features of soil 

parameters and enables spatial interpolation [7]. In particular, 
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geostatistics has been popularly applied in investigating and 

mapping soil pollution by heavy metals in recent years [8], 

[9]. Geostatistics uses the understanding of statistical 

variation as an important source of information for improving 

the estimation of an attribute at unsampled locations, given a 

limited set of measurements. The geostatistical methods 

consider the spatio-temporal variation of soil properties as a 

random process depending on both the time and space. In 

fact, these methods provide a set of statistical tools for 

incorporating spatial coordinates of observations in data 

processing [6]. The tools are useful for the study of spatial 

uncertainty and hazard assessment. Geostatistical analysis 

considers the concentration of a potentially hazardous 

element in an affected medium as a regionalized variable in 

space and attempts to compute and model the variogram, as 

well as to predict the concentration in non-sampled areas 

using kriging and statistical analysis of errors [10]. Some 

studies have attempted to apply both multivariate analyses 

and Geographical Information System (GIS) techniques in 

soils of big cities [11]. Geostatistical analysis, such as 

ordinary kriging, disjunctive kriging and indicator kriging 

have been widely used to study environmental pollution of 

soils [12], [13]. One of the most widely used nonparametric 

geostatistical methods is Indicator kriging (IK) which 

assumes no precondition on distributions of variables and 

uses a binary indicator transformation of data to make the 

predictor less sensitive to outliers [14]. 

No detailed studies have been undertaken to determinate 

the heavy metal levels in Ahwaz, southwestern Iran. Thus, 

The objectives of the this study were to determine: 1) the 

concentrations of Pb, Cd, Mn, and Fe in top soils of Ahwaz, 

2) heavy metals distribution through geostatistical analysis to 

identify their spatial patterns in the region and mapping of the 

environmental quality and risk assessment, and 3) natural or 

anthropic sources of individual metals in the soils using 

geostatistical and multivariate statistical analyses.  

 

II. MATERIAL AND METHOD 

A. Study Area and Sampling 

Ahwaz is located in the southwest of Iran (35° 33΄ 39˝ ~ 

35° 24΄ 15˝ N, 51° 35΄ 29˝ ~  51° 25΄ 03 ˝E) with an area of 

200km2 (Fig. 1). It has approximately 1133000 inhabitants 

and has a long industrial history, mainly steel and oil 

industries. Climate of the area is dry with an annual average 

temperature of 23 °C and an average annual rainfall of 590 

mm. There are about 60 metal smelting, power plants, 

petroleum processing and chemicals industries from which 

heavy metals are emitted into the environment. These have 

been identified as a possible point of elemental pollution, 

hence elevated levels of heavy metals pollution (Pb, Cd, Mn, 

and Fe).  

Spatial Variability of Heavy Metals in the Soils of Ahwaz 

Using Geostatistical Methods 

Abbas Hani, Narges Sinaei, and Ali Gholami 

International Journal of Environmental Science and Development, Vol. 5, No. 3, June 2014

294DOI: 10.7763/IJESD.2014.V5.495

mailto:Sinaei_n@yahoo.com


  International Journal of Environmental Science and Development, Vol. 5, No. 3, June 2014

295

  

 
Fig. 1. Land use (sampling point) and satellite maps of Ahwaz. 

 

B. Sampling and Chemical Analysis 

In July 2011, a total of 90 surface soil samples (0-25cm in 

depth) were taken from soils based on a land use map at 

1:100,000 scale (Fig. 1). Sampling sites were selected 

randomly and soil samples were taken at a depth of 0-15 cm 

and air-dried. Samples came from urban or rural areas of 

different land use. Positions of sampling sites were recorded 

by the aid of a Global Positioning System (GPS) receiver. 

Approximately 1kg of each sample was stored in 

polyethylene packages and transported to the laboratory. The 

soil samples were air - dried for several days at room 

temperature (20 - 22 °C) and then ground and sieved to a size 

of 2 mm for analysis of their properties. The samples were 

digested with HNO3–H2O2–HCl according to US EPA 

method 3050B [15]. Total contents of heavy metals were 

analyzed by inductively coupled plasma mass spectrometry 

(ICPMS) for Cu and Cd, by absorption fluorescence 

spectrometry (AFS). The heavy metal concentrations of Pb, 

Mn, and Fe were determined using inductively coupled 

plasma atomic emission spectroscopy (ICP-ES; 138 Ultrace; 

Jobin Yvon) and those of Cd with a graphite furnace atomic 

absorption spectrometer. 

C. Geostatistics 

Geostatistics uses the variogram technique to measure the 

spatial variability of the recognized variables and provides 

the input parameters for the spatial interpolation of kriging 

[5]. Kriging has been widely used as an important 

interpolation method at different scales, especially in studies 

on soil pollution [3]. The semivariance 𝛾 (ℎ), is calculate as 

(1): 

 

𝛾 ℎ =
1

2𝑛 ℎ 
 [𝑧 𝑥𝑖 − 𝑧 𝑥𝑖 − 𝑧 𝑥𝑖+ℎ ]2𝑛 ℎ 

𝑖=1           (1) 

 

where ℎ is the step width, 𝑛(ℎ) the number of sample pairs at 

each step width  ℎ , 𝑧 𝑥𝑖  the realization of the random 

function at location 𝑖 , and 𝑧 𝑥𝑖+ℎ  the realization of the 

random function at location (𝑖 + ℎ) [5]. The experimental 

variogram measures the average degree of dissimilarity 

between unsampled values and nearby data values and can 

thus depict autocorrelation at various distances. The 

variogram model was chosen from a set of mathematical 

functions that describe spatial relationships and usually fitted 

by weighted lost squares, and range, nugget and sill are then 

used in the kriging procedure. In this study, to make 

distribution maps, several spatial interpolation techniques 

were evaluated for the best results including kriging, 

global/local polynomial interpolation (G/LPI), inverse 

distance weighting (IDW) and radial basis functions (RBF). 

The predicted values by indicator kriging show the 

probability that variables do not exceed beyond the defined 

threshold. In Indicator kriging, soil variable is coded as 

indicator values 1 and 0 at a threshold value [6]. The spatial 

variable 𝑍 𝑢𝛼  at a given location (𝑢𝛼)  with a threshold 

value(𝑧𝑟), is transformed into an indicator variable with a 

binary distribution is calculate as (2): 

 

𝑖 𝑢𝛼 ; 𝑧𝑟 =  
1          if Z 𝑢𝛼 ≤ 𝑧𝑟

0          otherwise                              

       
  

                                                                                        

(2) 

In our study, threshold values were equal to the maximum 

allowable concentrations of heavy metals in soils and they 

were chosen according to the evaluation of the degree 

simulation quality and the model-experiment comparison of 

different model approaches, cross-validation indicators and 

additional model parameters can be used. For comparing 

these models, we used cross validation by the statistical 

parameters Root Mean Squared Error (RMSE) Mean Bias 

Error (MBE) and Mean Absolute Error (MAE) as shown in 

(3), (4) and (5): 

 

𝑀𝐵𝐸 =
1

𝑛
 [𝑧 𝑥𝑖 − 𝑍 ×  𝑥𝑖 ]2𝑛

𝑖=1                    (3) 

 

                     𝑀𝐴𝐸 =
1

𝑛
 |𝑧 𝑥𝑖 − 𝑍 ×  𝑥𝑖 |𝑛

𝑖=1                    (4) 

 

                  𝑅𝑀𝑆𝐸 =  
1

𝑛
 [𝑧 𝑥𝑖 − 𝑍 ×  𝑥𝑖 ]2𝑛

𝑖=1                (5) 

 

where 𝑧 𝑥𝑖  is actual soil variable, 𝑍 ×  𝑥𝑖  its estimate and 

n is soil variable data [16]. MBE is used for determining the 

degree of bias in the estimates, often referred to as the bias, 

but it should be used cautiously as an indicator of accuracy 

because negative and positive estimates counteract each 

other, and the resultant MBE tends to be lower than the actual 



  

error.  

D. Transformation and Statistical Analysis 

Logarithmic transformations were applied to normalize 

too highly skewed and outlier data sets because they can 

impair the variogram structure and the kriging results; 

however, normality may be strictly required in multivariate 

statistics and linear geostatistics [7]. Pearson correlation 

coefficients were applied to examine the relationships 

between soil heavy metals. Also, principal components 

analysis (PCA) was employed for identification of heavy 

metal sources. PCA converts the variables under 

investigation into factors, or principal components, and 

correlation matrix was used to identify the relationship 

between variables. Correlation among the original variables 

minimizes the elements dividing them into fewer groups. The 

application of varimax rotation of standardized component 

loadings enabled us to obtain a clear system as a result of the 

maximization of component loadings variance [17]. 

Descriptive statistical parameters of the data were 

performed using the SPSS 15.0 for Windows. Geostatistical 

analysis, semivariogram model fitting, and spatial 

distribution using ordinary kriging were performed with GIS 

software ArcGIS V.9.2 (ESRI Co, Redlands, USA). 

 

III. RESULT AND DISCUSSION 

Table I gives the basic descriptive statistics for data sets for 

heavy metals. It is shown that the skewness and kurtosis 

values for Cd and Cr were low, whereas these parameters in 

Pb, Mn and Fe were high and not normally distributed. 

Because of statistics and geostatistics analyses, the data is 

required to follow a normal distribution. The significance 

levels of the Kolmogorov-Smirnov normality test for the raw 

data and the logarithmically transformed significance are 

shown in Table I. The coefficients of variation of Pb, Cd and 

Fe were 65.03%, 70.32% and 82.73%, respectively which 

had greater variation among the soil heavy metals. Average 

values of the soil as reference values were used to evaluate 

pollution due to human influence [18]. Compared with the 

average values of the crust Pb and Cd had enriched values in 

Ahwaz soils. Based on the Netherlands Department of Soil 

Protection, the guide values for Pb and Cd, were 85 mg kg -1, 

0.8 mg kg -1, respectively. The average value for soil Pb in 

Ahwaz soils was 72.95, which just fell on these scopes. It was 

displayed that concentrations in 21 samples exceeded the 

guide value for Pb.   

 
TABLE I: SOME STATISTICAL PARAMETERS FOR SOIL HEAVY METALS 

Statistical parameter Pb Mn Fe Cd 

Mean 72.95 286.66 22701.73 3.36 

Median 57.40 253.30 18921.00 3.00 

SD 47.45 151.09 18713.03 2.37 

Maximum 246.60 976.50 108771.00 9.60 

Minimum 0.60 126.20 1675.20 0.10 

Skewness 1.96 3.13 3.16 0.83 

Kurtosis 4.14 11.12 10.79 0.16 

C.V. (%) 65.03 52.67 82.73 70.32 

Standard valuea 85 - - 0.80 

K-S p 0.000 0.000 0.00 0.161 

Log K-S p 0.192 0.117 0.065 - 

a
 [17] SD: standard deviation, K–S test: Kolmogorov-Smirnov test. 

The results showed that Cd, Cr, and Ni had passed the 

Kolmogoro–Smirnov normality test (K–Sp< 0.05), but Pb 

had not passed. Since further geostatistic analysis needs data 

to follow a normal distribution, data transformation was 

carried out prior to the next analysis. The lowest CV% that 

we found for Cr, Cd and Ni exhibited weak variation, and 

their content was almost constant in the study location, 

suggesting that their presence is probably due to lithogenic 

process. Additionally, Cr, Cd, and Ni levels were likely 

controlled by the same parent material. The Pb measurement 

values were transformed log normally due to the highly 

skewness and Cd, Cr, and Ni followed normal distribution. 

However, some urban soils studies [19] showed higher Cd 

concentration. 

According to the results of PCA, the original variables 

could be reduced to three factors (F1, F2 and F3), which 

accounted for 58.023% of the total variances (Table II). The 

factors obtained were rotated using a varimax-normalized 

algorithm that enables easier interpretation of the loadings of 

the principal components. Based on the PC loadings, the first 

group (F1) included Pb which had anthropogenic sources, the 

second group (F2) included Cd with natural process and 

finally, Fe and Mn had intermediate sources (pedogenic and 

anthropogenic).  
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TABLE II: TOTAL VARIANCE EXPLAINED AND COMPONENT MATRIXES 

(THREE PRINCIPAL COMPONENTS SELECTED) FOR HEAVY METAL 

CONTENTS 

Component Initial Eigenvalues 

 Total 
% 

of Variance 

Cumulative 

(%) 

Total variance explained  

1 1.369 22.815 22.815 

2 1.073 17.877 40.692 

3 1.040 17.331 58.023 

4 0.932 15.535 73.558 

5 0.886 14.763 88.321 

6 0.701 11.679 100.000 

 

Extraction Sums of Squared 

Loadings 
 

Rotation Sums of Squared 

Loadings 

Total 

% 

of 

Variance 

Cumulative 

(%) 
 Total 

% 

of 

Variance 

Cumulative 

(%) 

       

1.369 22.815 22.815  1.303 21.718 21.718 

1.073 17.877 40.692  1.105 18.410 40.127 

1.040 17.331 58.023  1.074 17.896 58.023 

 

A. Geostatistical Analysis 

The semivariogram experiment depicts the variance of the 

sample values at various separation distances. The ratio of 

nugget to sill (nugget/sill) can be used to express the extent of 

spatial autocorrelations of environmental factors. If the ratio 

is low (<25%), the variable has strong spatial 

autocorrelations at a regional scale, between 25% and 75%, 

the variable has moderate spatial dependence. A high ratio of 

the nugget effect (>75%) indicates spatial heterogeneity and 

shows only weak spatial dependence (Table III). 

The results showed that Cd was fitted with Exponential 



  

mode. A Spherical model was found to be Fe and finally Mn 

and Pb were fitted with Gaussian and linear models, 

respectively. The fitted model provides information about the 

spatial structure as well as the input parameters for kriging 

interpolation [19]. The range for all elements except Mn was 

around less than 1 km. So, there was no high spatial 

correlation of the elements over the complete region. The 

ratio of nugget to sill for Pb was more than 0.75, showing 

weak spatial dependence. The ratios for Cd, Mn and Fe were 

between 0.25 and 0.75, showing moderate spatial 

dependence which indicates that extrinsic factors (such as 

industrial pollution) may have affected their spatial 

correlations. The distribution maps of heavy metals including 

Pb, Cd, Mn and Fe concentrations are illustrated in Fig. 2. 

These maps show the spatial variation of heavy metal 

concentrations generated from their semivariograms. 

 
TABLE III: SUMMARY OF BEST FITTED MODELS HEAVY METALS 

Heavy 

metals 

Best fitted 

model 

Nugge

t 

(C0) 

Sill 

(C0+C) 

(C0)/ 

(C0+C) 
R2 

Pb Linear 16.27 21.41 0.76 0.58 

Cd Spherical 0.328 0.845 0. 39 0.65 

Cr 
Exponenti

al 
122.99 683.28 0.18 0.86 

Mn Gaussian 8.56 23.78 0.36 0.87 

Fe 
Exponenti

al 
63.21 150.50 0.42 0.74 

Ni Spherical 2.56 3.16 0.81 0.56 

 

 

 

 

 

 

 
Fig. 2. The estimated probability maps of Pb, Mn, Fe and Cd. 

 

Predictive performances of the fitted models were checked 

on the basis of cross validation. Table III shows the estimated 

MAE, MBE and RMSE values by IDW, LPI, RBF and OK 

method interpolations. RBF was selected as interpolation 

method for Pb, Cd, Cr, Mn and Fe with the lowest errors 

while the estimated probability maps of Ni was produced by 

OK (Table IV).  

 
TABLE IV: CROSS-VALIDATION RESULTS FOR KRIGING METHOD 

Heavy 

metals 

Method 

interpolation 

Errors 

MAE MBE RMSE 

Pb OK 0.209 0.006 0.313 

Cd OK 1.283 0.029 1.535 

Mn OK 2.13 0.003 0.281 

Fe OK 2.052 1.248 2.630 

 

Fig. 2 presents the spatial patterns of six heavy metals in 

soils of Ahwaz. The spatial distribution maps for Ni and Pb 

showed similar spatial trends with low concentrations in 

north area and high concentrations in south area. Moreover, it 

was found that the highest distribution of Fe had one part 

with a clear boundary almost along the northwest area and the 

lowest clear boundary in southeast area. The highest 

concentration of Mn was located in the northwest part of 

Ahwaz, while, Cr and Cd had highest concentration in north 

part of the city. 

 

IV. CONCLUSIONS 

The assessment of pollution in Ahwaz has revealed some 

critical environmental situations with increased heavy metal 

concentrations. Among the four metals, Cd and Pb had high 

risk for environment pollution and human health. The sources 

of different heavy metals in urban topsoils are related to 

traffic, industry and natural substances. Based on the heavy 

metals concentrations and geostatistics, Pb is controlled by 

anthropogenic activity connected with traffic and industries. 

While Cd is controlled by anthropogenic and pedogenic 

sources. In addition, the average concentrations of the study 

area heavy metals, with the exception of Cd, were lower than 

the standard value concentrations. The probability map 

produced based on kriging interpolation gives a spatial 

structure analysis and a view of soil heavy metals changes by 

contour maps. 

International Journal of Environmental Science and Development, Vol. 5, No. 3, June 2014

297



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[17] Department of Soil Protection, “The Netherlands Soil Contamination 

Guidelines, Netherlands Intervention Values for Soil Remediation,” 

Reference no. DBO/07494013, Amsterdam, the Netherlands, 1994.  

[18] Y. M. Zheng, T. B. Chen, and J. Z. He, “Multivariate geostatistical 

analysis of heavy metal in top soils from Beijing, China,” J. Soil 

Sediment, vol. 8, no. 1, pp. 51-58, 2008. 

[19] P. Burgos, E. Madejón, A. Pérez-de-Mora, and F. Cabrera, “Spatial 

variability of the chemical characteristics of a trace element- 

contaminated soil before and after remediation,” Geoderma, vol. 130, 

pp. 157-175, 2006. 

 

 

Abbas Hani was born in Saveh city in Iran on March 

24, 1976. He was graduated with Bachelor Degree in 

Agriculture Engineering-Soil Science in 2000 and in 

Master of Science in Soil Science in 2002 from Ahvaz 

University. He was graduated as Ph.D. in faculty of 

Agriculture and Natural Resources, department of Soil 

Science, Islamic Azad University, Science and 

Research Branch in Tehran in 2010. He is a faculty 

member of Islamic Azad university, Saveh Branch in 

Saveh city of Markazi province) since 2003 and now he is studying his thesis 

in field of Soil and Environmental Pollution and Assessments.  

 

 

Narges Sinaei graduated in Master of Environmental 

Science in 2012 from Islamic Azad University, 

Khuzestan Science and Research Branch. 

 

 

 

 

 

 

 

Ali Gholami was born in Tehran city in Iran on 

February 19, 1976. He was graduated with Bachelor 

Degree in Agriculture Engineering-Soil Science in 2000 

and in Master of Science in Soil Science in 2005 from 

Islamic Azad University in Iran in Isfahan province. He 

graduated as Ph.D. in faculty of Agriculture and Natural 

Resources, department of Soil Science, Islamic Azad 

university, Science and Research Branch in Tehran in 

2006 and academic member of Islamic Azad University, 

Khuzestan Science and Research Branch in Ahwaz city of Khuzestan 

province in 2007 and now he is studying his thesis in field of land use 

changes and its influence on soil physical, chemical and mineralogy 

characteristics. He was selected as the manager of soil science department 

and research office in Islamic Azad University, Khuzestan Science and 

Research Branch in 2009 and it now. 

 

International Journal of Environmental Science and Development, Vol. 5, No. 3, June 2014

298

REFERENCES 

[1] A. Demirak, F. Yilmaz, and A. L.Tuna, “Heavy metals in water, 

sediment and tissues of leuciscus cephalus from a stream in 

southwestern Turkey,” Chemosphere, vol. 63, pp. 1451-1458, 2006. 

[2] H. Taghipour, M. Mosaferi, F. Armanfar, and S. J. Gaemmagami, 

“Heavy metals pollution in the soils of suburban areas in big cities: a 

case study,” Int. J. Environ. Sci. Technol., vol. 10, pp. 243-250, 2013. 

[3] T. Chen, X. M. Liu, M. Z. Zhu et al., “Identification of trace element 

sources and associated risk assessment in vegetable soils of the 

urban-rural transitional area of Hangzhou, China,” Environ. Pollut, vol. 

151, pp. 67-78, 2008. 

[4] A. K. Krishna and P. K. Govil, “Assessment of heavy metal 

contamination in soils around Manali industrial area, Chennai, 

Southern India,” Environ. Geol, vol. 54, pp. 1465-1472, 2008. 

[5] R. Webster and M. Oliver, Geostatistics for Environmental Scientists, 

New York: John Wiley and Sons, 2001, pp. 271. 

[6] P. Goovaerts, Geostatistics for Natural Resource Evaluation, New 

York: Oxford University, 1997. 

[7] USEPA, SW-846 Reference Methodology: Method 3050b. Standard 

Operating Procedure for the Digestion of Soil/Sediment Samples 

Using a Hotplate/Beaker Digestion Technique, Chicago, Illinois, 1999. 

[8] D. McGrath, C. S. Zhang, and O. Carton, “Geostatistical analyses and 

hazard assessment on soil lead in Silvermines, area Ireland,” Environ. 

Pollut, vol. 127, pp. 239-248, 2004. 

[9] Y. P. Lin, T. K. Chang, C. W. Shih, and C. H. Tseng, “Factorial and 

indicator kriging methods using a geographic information system to 

delineate spatial variation and pollution sources of soil heavy metals,” 

Environ. Geol, vol. 42, pp. 900-909, 2002. 

[10] C. W. Liu, C. S. Jang, and C. M. Liao, “Evaluation of arsenic 

contamination potential using indicator kriging in the Yun-Lin aquifer 

(Taiwan),” Sci. Total Environ., vol. 321, pp. 173-88, 2004. 

[11] A. Papoulis and S. U. Pillai, Probability, Random Variables and 

Stochastic Processes, 4th ed. New York: McGraw-Hill, 2002. 

[12] C. S. Zhang, “Using multivariate analyses and GIS to identify 

pollutants and their spatial patterns in urban soils in Galway, Ireland,” 

Environ. Pollut, vol. 142, pp. 501-511, 2006. 

[13] B. Y. Cheng, W. T. Fang, G. S. Shyu, and T. K. Chang, “Distribution of 

heavy metals in the sediments of agricultural fields adjacent to urban 

areas in Central Taiwan,” Paddy Water Environ., vol. 11, pp. 343-351, 

2013. 

[14] S. J. Cheng, “Use of multivariate indicator kriging methods for 

assessing groundwater contamination extents for irrigation,” Environ. 

Monit Assess., vol. 185, no. 5, 4049-4061, 2013. 

[15] K. W. Juang and D. Y. Lee, “Simple indicator kriging for estimating 

the probability of incorrectly delineating hazardous areas in a 

contaminated site,” Environ. Sci. Technol., vol. 32, pp. 2487-2493, 

1998.  

[16] F. L ópez-Granados, M. Jurado-Exp ósito, S. Atenciano, A. 
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