
  

  
Abstract—The use of a life cycle assessments (LCA) is 

dramatically increasing, partially due to the ease of use of the 
commercial software. However, there is a critical doubt about 
the credibility of the assessment results, particularly in endpoint 
assessments. Each phase of a LCA involves some simplifications, 
assumptions and choices. More research is required to improve 
the credibility of assessments, such as studies of time and space 
effects and studies of dose-response effects. Another method of 
improving the credibility of assessments is to characterize, 
propagate and analyze uncertainty in a LCA. In this study, a 
probabilistic method (Monte Carlo simulation) and a 
possibilistic method (fuzzy set theory) are used to model 
uncertainty in the inventory (input data) of a naphtha cracking 
plant in Taiwan. The results of the probabilistic and possibilistic 
approaches are compared and discussed. The results show that 
although probability and possibility distributions have 
approximately the same bottom width, their highest peaks have 
almost the same value. The primary difference between 
probabilistic and possibilistic methods is in the number of 
calculations. In this study, at least 10,000-time simulations are 
used for a Monte Carlo simulation, in order to obtain a 
smoother curve and the vertex method for the possibilistic 
approach only uses 11 α-cuts (intervals), to produce a smooth 
triangle. 
 

Index Terms—Life cycle assessment, Monte Carlo simulation, 
fuzzy set theory, possibility theory.  

  

I. INTRODUCTION 
A life-cycle assessment is a technique to assess the 

environmental impact that is associated with all of the stages 
of a product's life, from raw material extraction through 
materials processing, manufacture, distribution, use, repair 
and maintenance, and disposal or recycling. According to the 
ISO 14040 [1] and 14044 [2] standards, a Life Cycle 
Assessment has four distinct phases. The first phase is 'Goal 
and scope', which requires an explicit statement of the goal 
and scope of the study. It establishes the context of the study 
and explains how and to whom the results are to be 
communicated. The second phase is a ‘Life cycle inventory 
(LCI)’, which involves the creation of an inventory of the 
flows from and to nature for a product system. Inventory 
flows include inputs of water, energy and raw materials, and 
releases to air, land and water. The third phase is a ‘Life cycle 
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impact assessment (LCIA)’, which evaluates the significance 
of any potential environmental impact, based on the LCI flow 
results. A classical LCIA consists of the following mandatory 
elements: selection of impact categories, category indicators 
and characterization models. In the classification stage, the 
inventory parameters are sorted and assigned to specific 
impact categories. In impact measurement, the categorized 
LCI flows are characterized, using one of many possible 
LCIA methodologies, into common equivalence units that 
are then summed to provide an overall impact category total. 
The last phase is ‘Interpretation’, which is a systematic 
technique that identifies, quantifies, checks, and evaluates 
information from the results of the life cycle inventory and/or 
the life cycle impact assessment. The results of the inventory 
analysis and impact assessment are summarized during the 
interpretation phase. 

 
Fig. 1. Uncertainty sources and types in a LCA. 

Uncertainty can occur in each phase and is often not 
considered in LCA studies, although it can be significant [3]. 
The sources of uncertainty in a LCA are the data, choices and 
relationships, as shown in Fig.1. Data uncertainty refers to 
uncertainty in the input data, such as resource consumption or 
emissions. Data uncertainty can be variable, mis-specified, 
erroneous, incomplete, or subject to rounding-off. 
Uncertainty in choices is a consequence of the difference in 
output that results from choices for the system boundaries, 
allocation principles, impact assessment models and time 
horizons for an assessment model. Uncertainty of choices 
may occur because of an inconsistency in the goal and scope 
of the analysis, or inconsistency in alternatives, possibly due 
to the assignment of different allocation methods for different 
product chains. Relationship uncertainty is the uncertainty 
that results from model parameters (characteristic factors, 
GWP, weighting, etc.) and the discounting formula used to 
calculate long-term impact. Relationships may be wrong, 
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incomplete, or may have been implemented inaccurately in 
the software.  

Uncertainty can be dealt with in several ways [3]: the 
scientific way, the social way and the statistical way. The first 
two methods remove or reduce the uncertainty, but the third 
quantifies it. This study uses probabilistic and possibilistic 
approaches to characterize, propagate and analyze 
uncertainty in input data. The probabilistic method uses a 
Monte Carlo Simulation and the possibilistic method uses 
fuzzy set theory. The case study is an analysis of the 
environmental impact of the expansion plan for a naphtha 
cracking plant in Taiwan. The results of the probabilistic and 
possibilistic approaches are compared and discussed. 

 

II.   METHODS AND MATERIALS 

A. Case Study 
The case study is a naphtha cracking plant that is located in 

Yunlin County, in Taiwan, as shown in Fig. 2. It is in an 
offshore industrial zone, with a total area of 2,603 hectares. 
Currently, 61 factories have an annual output of 6,221 tons. 
In response to market demand, the plant proposes an 
expansion plan, in order to extend the number of factories to 
77 and to increase production to 8,174 tons per year. 
However, the expansion plan will also increase its emissions 
of TSP from 3,340 to 4,323 tons per year, SO2 from 16,000 to 
19,788 tons per year, NO2 from 19,622 to 23,881 tons per 
year, VOC from 4,302 to 5,389 tons per year and waste-water 
from 188,000 to 304,500 tons per day. 

 

 
Fig. 2. The case study: a naphtha cracking plant in Taiwan. 

B. Life Cycle Impact Assessment  
Two life cycle impact assessments are selected for the 

study: Eco-indicator 99 [4] and ReCiPe [5]. Eco-indicator 99 
(Fig. 3) is one of the most widely used impact assessment 
methods for a LCA. It is the successor of Eco-indicator 95, 
the first endpoint impact assessment method, which allows 
the environmental load of a product to be expressed in a 
single score. 

This model is used for the following impact categories: 

 Carcinogens: carcinogenic affects due to the emission of 
carcinogenic substances to air, water and soil. Damage is 
expressed in Disability adjusted Life Years (DALY)/kg 
emitted. 

 Respiratory organics: respiratory effects resulting from 
summer smog, due to the emission of organic substances 
to the air, which cause respiratory problems. Damage is 
expressed in DALY/kg emitted. 

 Respiratory inorganics: respiratory effects resulting from 
winter smog, caused by the emission of dust, sulfur and 
nitrogen oxides to the air. Damage is expressed in 
DALY/kg emitted. 

 Climate change: damage, expressed in DALY/kg emitted, 
resulting from an increase in diseases and death caused by 
climate change. 

 Radiation: damage, expressed in DALY/kg emitted, 
resulting from radioactive radiation 

 Ozone layer: damage, expressed in DALY/kg emitted, 
due to increased UV radiation as a result of the emission 
of ozone-depleting substances to the air. 

 Ecotoxicity: damage to the quality of the ecosystem as a 
result of the emission of ecotoxic substances to the air, 
water and soil. Damage is expressed in Potentially 
Affected Fraction (PAF)*m2*year/kg emitted. 

 Acidification/ Eutrophication: damage to the quality of 
the ecosystem as a result of the emission of acidifying 
substances to the air. Damage is expressed in Potentially 
Disappeared Fraction (PDF)*m2*year/kg emitted. 

 Land use: damage as a result of either the conversion of 
land or the occupation of land. Damage is expressed in 
Potentially Disappeared Fraction (PDF)*m2*year/m2 or 
m2a. 

 Minerals: surplus energy per kg mineral or ore as a result 
of decreasing ore grades. 

ReCiPe (Fig. 4) is an impact assessment method that uses 
harmonized category indicators at the midpoint and the 
endpoint level. It is an improvement on CML 2000 and 
Eco-indicator 99. The main contributors to this project are 
PRé, CML and RIVM and Radboud University. This model 
is applicable to the following impact categories: climate 
change, ozone depletion, acidification, eutrophication, 
toxicity, human health damage due to PM10 and Ozone, 
ionising radiation, land-use, water depletion, mineral 
resource depletion and fossil fuel depletion. 

C. Dealing with probabilistic uncertainty in a LCIA: the 
Monte Carlo method  

Monte Carlo methods are a broad class of computational 
algorithms that rely on repeated random sampling to obtain 
numerical results; i.e., by running simulations many times 
over in order to calculate those same probabilities 
heuristically, similarly to actually playing and recording 
results in a real casino; hence the name. They are often used 
in physical and mathematical problems and are most suited to 
situations where it is impossible to obtain a closed-form 
expression or where it is infeasible to use a deterministic 
algorithm. Monte Carlo methods are mainly used for three 
distinct types of problem: optimization, numerical integration 
and the generation of samples from a probability distribution. 
In this study, every input data is associated with a triangular 
probability distribution that expresses its probabilistic 
uncertainty and 10,000 simulations are run to produce the 
probabilistic distribution, as shown in Fig. 5.  
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Fig. 3. Framework of Eco-indicator 99 [4]. 

 

 
Fig. 4. Framework of ReCiPe [5]. 

 

 
Fig. 5. Triangular probabilistic and possibilistic distributions of the input 

data. 

D. Dealing with possibilistic uncertainty in a LCIA: the 
fuzzy method 
Possibility theory is an uncertainty theory that is devoted 

to the handling of incomplete information [6]. In Zadeh's 
view [6], possibility distributions provide a graded semantics 
for natural language statements. A possibility distribution is a 
mapping, π, from a set of states of affairs, S, to a totally 
ordered scale, such as the unit interval [0, 1]. The function, π, 
represents the knowledge of an agent (about the actual state 
of affairs) to distinguish what is plausible from what is less 
plausible, what is the normal course of things from what is 

not and what is surprising from what is expected. In this study, 
every input data is also associated with a triangular 
possibility distribution that expresses its possibilistic 
uncertainty and only 11-cuts are used to obtain 11 intervals. 
Interval-based calculations are performed, as shown in Fig. 6. 

 
Fig. 6. Triangular probabilistic and possibilistic distributions of the input 

data. 

III. RESULTS 
The uncertainty in the input data is propagated in 

Eco-indicator 99 and ReCiPe.  The results from Eco-indicator 
99 are shown in Figs. 7 to 13 and those from  ReCiPe are 
shown from Figs. 14 to 24. 
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A. Eco-indicator 99 

 
Fig. 7. The probability and possibility distributions for climate change in 

Eco-indicator 99, caused by the uncertain and imprecise input data. 
 

 
Fig. 8. The probability and possibility distributions for ozone layer in 
Eco-indicator 99, caused by the uncertain and imprecise input data. 

 

 
Fig. 9. The probability and possibility distributions for carcinogens in 
Eco-indicator 99, caused by the uncertain and imprecise input data. 

 

 
Fig. 10. The probability and possibility distributions for respiratory organics 

in Eco-indicator 99, caused by the uncertain and imprecise input data. 

 
Fig. 11. The probability and possibility distributions for respiratory 

inorganics in Eco-indicator 99, caused by the uncertain and imprecise input 
data. 

 

 
Fig. 12. The probability and possibility distributions for ecotoxicity in 

Eco-indicator 99, caused by the uncertain and imprecise input data. 
 

 
Fig. 13. The probability and possibility distributions for 

acidification/eutrophication in Eco-indicator 99, caused by the uncertain and 
imprecise input data. 

B. ReCiPe 

 
Fig. 14. The probability and possibility distributions for climate change 

(human health) in ReCiPe, caused by the uncertain and imprecise input data. 
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Fig. 15. The probability and possibility distributions for ozone depletion in 

ReCiPe , caused by the uncertain and imprecise input data. 
 

 
Fig. 16. The probability and possibility distributions for human toxicity in 

ReCiPe, caused by the uncertain and imprecise input data. 
 

 
Fig. 17. The probability and possibility distributions for photochemical 

oxidant formation in ReCiPe, caused by the uncertain and imprecise input 
data. 

 

 
Fig. 18. The probability and possibility distributions for particulate matter 

formation in ReCiPe, caused by the uncertain and imprecise input data. 

 
Fig. 19. The probability and possibility distributions for climate change 

(ecosystems) in ReCiPe, caused by the uncertain and imprecise input data. 
 

 
Fig. 20. The probability and possibility distributions for terrestrial 

acidification in ReCiPe, caused by the uncertain and imprecise input data. 
 

 
Fig. 21. The probability and possibility distributions for freshwater 

eutrophication in ReCiPe, caused by the uncertain and imprecise input data. 
 

 
Fig. 22. The probability and possibility distributions for terrestrial 

ecotoxicity in ReCiPe, caused by the uncertain and imprecise input data. 
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Fig. 23. The probability and possibility distributions for freshwater 

ecotoxicity in ReCiPe, caused by the uncertain and imprecise input data. 
 

 
Fig. 24. The probability and possibility distributions for marine ecotoxicity 

in ReCiPe 99, caused by the uncertain and imprecise input data. 
 

IV. DISCUSSION 
The distributions of these outputs have the following 

features. 
 Shape. The probability distributions are not smooth, but 

the possibility distributions are approximately triangular. 
The highest peaks of the probability and possibility 
distributions for a specific output have almost the same 
value. The highest peak of a possibility distribution is 1, 
but the area under a probability distribution is 1. 

 Bottom width. The probability and possibility 
distributions have approximately the same bottom width. 

 Number of calculations. The primary difference 
between the probabilistic and possibilistic methods lies in 
the number of calculations. In this study, at least 10,000 
simulations are run for the Monte Carlo simulation, in 
order to obtain a smoothe curve; while the vertex method 
for possibilistic method only uses 11 α-cuts (intervals) to 
produce a smooth triangle. 

These features are also similar to the analysis in [7], 
although [7] use normal distributions. 
 

V.   CONCLUSION 
This study proposes the use of a Monte Carlo simulation as 

the probabilistic method and fuzzy set theory as a 
possibilistic method to characterize, propagate, and analyze 
the uncertainty in a LCA. The analysis of the propagation of 
the uncertainty propagation in a LCA allows an 
understanding of the effect of data uncertainty and 
demonstrates its importance. The source of the uncertainty 

for this study is the input data, which is uncertain because of 
measurement error or because the information used is 
incomplete. Future studies will extend this concept to deal 
with model uncertainty that is due to model knowledge and 
model parameters.  
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